Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genetic diversity and population structure of the Tibetan poplar (Populus szechuanica var. tibetica) along an altitude gradient.

Identifieur interne : 002215 ( Main/Exploration ); précédent : 002214; suivant : 002216

Genetic diversity and population structure of the Tibetan poplar (Populus szechuanica var. tibetica) along an altitude gradient.

Auteurs : Dengfeng Shen ; Wenhao Bo ; Fang Xu ; Rongling Wu

Source :

RBID : pubmed:25079034

Descripteurs français

English descriptors

Abstract

BACKGROUND

The Tibetan poplar (Populus szechuanica var. tibetica Schneid), which is distributed at altitudes of 2,000-4,500 m above sea level, is an ecologically important species of the Qinghai-Tibet Plateau and adjacent areas. However, the genetic adaptations responsible for its ability to cope with the harsh environment remain unknown.

RESULTS

In this study, a total of 24 expressed sequence tag microsatellite (EST-SSR) markers were used to evaluate the genetic diversity and population structure of Tibetan poplars along an altitude gradient. The 172 individuals were of genotypes from low-, medium- and high-altitude populations, and 126 alleles were identified. The expected heterozygosity (HE) value ranged from 0.475 to 0.488 with the highest value found in low-altitude populations and the lowest in high-altitude populations. Genetic variation was low among populations, indicating a limited influence of altitude on microsatellite variation. Low genetic differentiation and high levels of gene flow were detected both between and within the populations along the altitude gradient. An analysis of molecular variance (AMOVA) showed that 6.38% of the total molecular variance was attributed to diversity between populations, while 93.62% variance was associated with differences within populations. There was no clear correlation between genetic variation and altitude, and a Mantel test between genetic distance and altitude resulted in a coefficient of association of r = 0.001, indicating virtually no correlation.

CONCLUSION

Microsatellite genotyping results showing genetic diversity and low differentiation suggest that extensive gene flow may have counteracted local adaptations imposed by differences in altitude. The genetic analyses carried out in this study provide new insight for conservation and optimization of future arboriculture.


DOI: 10.1186/1471-2156-15-S1-S11
PubMed: 25079034
PubMed Central: PMC4118629


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genetic diversity and population structure of the Tibetan poplar (Populus szechuanica var. tibetica) along an altitude gradient.</title>
<author>
<name sortKey="Shen, Dengfeng" sort="Shen, Dengfeng" uniqKey="Shen D" first="Dengfeng" last="Shen">Dengfeng Shen</name>
</author>
<author>
<name sortKey="Bo, Wenhao" sort="Bo, Wenhao" uniqKey="Bo W" first="Wenhao" last="Bo">Wenhao Bo</name>
</author>
<author>
<name sortKey="Xu, Fang" sort="Xu, Fang" uniqKey="Xu F" first="Fang" last="Xu">Fang Xu</name>
</author>
<author>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25079034</idno>
<idno type="pmid">25079034</idno>
<idno type="doi">10.1186/1471-2156-15-S1-S11</idno>
<idno type="pmc">PMC4118629</idno>
<idno type="wicri:Area/Main/Corpus">002066</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002066</idno>
<idno type="wicri:Area/Main/Curation">002066</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002066</idno>
<idno type="wicri:Area/Main/Exploration">002066</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genetic diversity and population structure of the Tibetan poplar (Populus szechuanica var. tibetica) along an altitude gradient.</title>
<author>
<name sortKey="Shen, Dengfeng" sort="Shen, Dengfeng" uniqKey="Shen D" first="Dengfeng" last="Shen">Dengfeng Shen</name>
</author>
<author>
<name sortKey="Bo, Wenhao" sort="Bo, Wenhao" uniqKey="Bo W" first="Wenhao" last="Bo">Wenhao Bo</name>
</author>
<author>
<name sortKey="Xu, Fang" sort="Xu, Fang" uniqKey="Xu F" first="Fang" last="Xu">Fang Xu</name>
</author>
<author>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
</author>
</analytic>
<series>
<title level="j">BMC genetics</title>
<idno type="eISSN">1471-2156</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Altitude (MeSH)</term>
<term>DNA, Plant (genetics)</term>
<term>Gene Flow (MeSH)</term>
<term>Genetic Variation (MeSH)</term>
<term>Genetics, Population (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Microsatellite Repeats (MeSH)</term>
<term>Models, Genetic (MeSH)</term>
<term>Populus (genetics)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Tibet (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (génétique)</term>
<term>Altitude (MeSH)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Flux des gènes (MeSH)</term>
<term>Génotype (MeSH)</term>
<term>Génétique des populations (MeSH)</term>
<term>Modèles génétiques (MeSH)</term>
<term>Populus (génétique)</term>
<term>Répétitions microsatellites (MeSH)</term>
<term>Tibet (MeSH)</term>
<term>Variation génétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Plant</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Tibet</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des plantes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Altitude</term>
<term>Gene Flow</term>
<term>Genetic Variation</term>
<term>Genetics, Population</term>
<term>Genotype</term>
<term>Microsatellite Repeats</term>
<term>Models, Genetic</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Altitude</term>
<term>Analyse de séquence d'ADN</term>
<term>Flux des gènes</term>
<term>Génotype</term>
<term>Génétique des populations</term>
<term>Modèles génétiques</term>
<term>Répétitions microsatellites</term>
<term>Tibet</term>
<term>Variation génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The Tibetan poplar (Populus szechuanica var. tibetica Schneid), which is distributed at altitudes of 2,000-4,500 m above sea level, is an ecologically important species of the Qinghai-Tibet Plateau and adjacent areas. However, the genetic adaptations responsible for its ability to cope with the harsh environment remain unknown.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>In this study, a total of 24 expressed sequence tag microsatellite (EST-SSR) markers were used to evaluate the genetic diversity and population structure of Tibetan poplars along an altitude gradient. The 172 individuals were of genotypes from low-, medium- and high-altitude populations, and 126 alleles were identified. The expected heterozygosity (HE) value ranged from 0.475 to 0.488 with the highest value found in low-altitude populations and the lowest in high-altitude populations. Genetic variation was low among populations, indicating a limited influence of altitude on microsatellite variation. Low genetic differentiation and high levels of gene flow were detected both between and within the populations along the altitude gradient. An analysis of molecular variance (AMOVA) showed that 6.38% of the total molecular variance was attributed to diversity between populations, while 93.62% variance was associated with differences within populations. There was no clear correlation between genetic variation and altitude, and a Mantel test between genetic distance and altitude resulted in a coefficient of association of r = 0.001, indicating virtually no correlation.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>Microsatellite genotyping results showing genetic diversity and low differentiation suggest that extensive gene flow may have counteracted local adaptations imposed by differences in altitude. The genetic analyses carried out in this study provide new insight for conservation and optimization of future arboriculture.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25079034</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2156</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15 Suppl 1</Volume>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>BMC genetics</Title>
<ISOAbbreviation>BMC Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Genetic diversity and population structure of the Tibetan poplar (Populus szechuanica var. tibetica) along an altitude gradient.</ArticleTitle>
<Pagination>
<MedlinePgn>S11</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2156-15-S1-S11</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The Tibetan poplar (Populus szechuanica var. tibetica Schneid), which is distributed at altitudes of 2,000-4,500 m above sea level, is an ecologically important species of the Qinghai-Tibet Plateau and adjacent areas. However, the genetic adaptations responsible for its ability to cope with the harsh environment remain unknown.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">In this study, a total of 24 expressed sequence tag microsatellite (EST-SSR) markers were used to evaluate the genetic diversity and population structure of Tibetan poplars along an altitude gradient. The 172 individuals were of genotypes from low-, medium- and high-altitude populations, and 126 alleles were identified. The expected heterozygosity (HE) value ranged from 0.475 to 0.488 with the highest value found in low-altitude populations and the lowest in high-altitude populations. Genetic variation was low among populations, indicating a limited influence of altitude on microsatellite variation. Low genetic differentiation and high levels of gene flow were detected both between and within the populations along the altitude gradient. An analysis of molecular variance (AMOVA) showed that 6.38% of the total molecular variance was attributed to diversity between populations, while 93.62% variance was associated with differences within populations. There was no clear correlation between genetic variation and altitude, and a Mantel test between genetic distance and altitude resulted in a coefficient of association of r = 0.001, indicating virtually no correlation.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Microsatellite genotyping results showing genetic diversity and low differentiation suggest that extensive gene flow may have counteracted local adaptations imposed by differences in altitude. The genetic analyses carried out in this study provide new insight for conservation and optimization of future arboriculture.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shen</LastName>
<ForeName>Dengfeng</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bo</LastName>
<ForeName>Wenhao</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Fang</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Rongling</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genet</MedlineTA>
<NlmUniqueID>100966978</NlmUniqueID>
<ISSNLinking>1471-2156</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000531" MajorTopicYN="Y">Altitude</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051456" MajorTopicYN="N">Gene Flow</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="Y">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005828" MajorTopicYN="N">Genetics, Population</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018895" MajorTopicYN="N">Microsatellite Repeats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018609" MajorTopicYN="N" Type="Geographic">Tibet</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25079034</ArticleId>
<ArticleId IdType="pii">1471-2156-15-S1-S11</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2156-15-S1-S11</ArticleId>
<ArticleId IdType="pmc">PMC4118629</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2000 Jun;155(2):945-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10835412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Popul Biol. 2001 Nov;60(3):227-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11855957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Mar 22;295(5563):2267-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11910112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2002 Jun;56(6):1199-216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12144020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2004 Jun;21(6):991-1007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14963101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2004 Jun;5(6):435-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15153996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 2004 Dec 21;568(2):233-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15542110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):155-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Jul;14(8):2611-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15969739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2005 Aug;20(8):435-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2006 Oct;15(11):3469-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16968284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2007 Dec;61(12):2925-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17924954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2007 Nov;22(11):569-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17988759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2008 Mar 27;8:98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18371203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W5-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18440982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008 Jul 28;9:323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18662398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2011 Apr;59(1):225-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21292014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2009 Sep;9(5):1322-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21564903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2008 Sep;8(5):1034-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21585963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 Jul;21(13):3210-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22548448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 Aug;21(15):3729-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22680783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Oct 1;28(19):2537-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22820204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2013 Feb;171(2):571-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22907523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 Nov;21(22):5530-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23058000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2013 Jan;111(1):1-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23104641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2013 Jan;13(1):144-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23134475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2012 Dec;13(12):867-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23154809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetica. 2013 Mar;141(1-3):95-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23456320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2013 Mar;3(3):629-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23532761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1987 Sep;41(5):1046-1058</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28563422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1998 Apr;52(2):558-565</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28568324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1973 Dec;70(12):3321-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4519626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometrics. 1984 Mar;40(1):157-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6733226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Jul 2;394(6688):69-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9665128</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Bo, Wenhao" sort="Bo, Wenhao" uniqKey="Bo W" first="Wenhao" last="Bo">Wenhao Bo</name>
<name sortKey="Shen, Dengfeng" sort="Shen, Dengfeng" uniqKey="Shen D" first="Dengfeng" last="Shen">Dengfeng Shen</name>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
<name sortKey="Xu, Fang" sort="Xu, Fang" uniqKey="Xu F" first="Fang" last="Xu">Fang Xu</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002215 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002215 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25079034
   |texte=   Genetic diversity and population structure of the Tibetan poplar (Populus szechuanica var. tibetica) along an altitude gradient.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25079034" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020